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Hydrodynamic instability of flow in a centrifugal force field [i, 3] (Taylor-Gort!er 
vortices) significantly affects the operation of different apparatus with curving c f the 
flow and the initiation of the transition from the laminar into the turbulent state [3, 4]. 
Investigation of the development of vortices in the boundary layer of a liquid near a con- 
cave surface (Gortler vortices) has been confined for a long time, because of the complexity 
of the problem, to their initial linear stage. The rate of growth of the amplitude of vor- 
tices as a function of their wavelength was determined using a special form of the solution 
of the Navier-Stokes equations [5, 6]. The disagreement of the results of such works, 
especially for long-wavelength vortices, stimulated an asymptotic analysis of the development 
of such vortices. In [7-11] it is shown that the buildup of the boundary layer must be 
taken into account and the stabilizing action of nonlinear effects was studied, while in [12] 
the effect of the initial conditions was considered. Many results of theoretical and experi- 
mental investigations are presented in [13, 14], and (still) rare data for a gas are contained 
in [14, 15]. Nonstationary development of vortices is analyzed in [16], where the wavelength 
ranges of the most stable vortices are determined. 

Asymptotic analysis of the Navier-Stokes equations for large Reynolds and Gortler num- 
bers makes it possible to determine the basic mechanisms of development of flow instability, 
find the similarity parameters, and simplify the boundary-value problems, whose solution is 
of great theoretical and applied significance. Different aspects of the development of 
Gortler vortices in such an approach were studied in [17-19]. 

i. Consider a uniform flow of a viscous liquid with large but subcritical Reynolds 
number (Re = u~L/v = ~-2, u~ is the velocity of the incident flow, L is the distance along 
the flow from the front edge of the surface up to the point of flow instability, and v is 
the coefficient of kinematic viscosity) over a concave surface. A two-dimensional laminar 
boundary layer forms near this surface. Under some conditions such a flow can become unstable. 
Then stationary Gortler vortices, extending in the longitudinal direction, arise in the 
boundary layer. In what follows we construct the solution of the Navier-Stokes equations for 
three-dimensional vortex regions in the limit Re § ~. 

A schematic diagram of the flow of interest is shown in Fig. i. Here all linear dimen- 
sions are scaled to L, R is the radius of curvature, and ~ ~ s is the characteristic thick- 
ness of the boundary layer. In what follows the velocity components u, v, and w (along the 
x, y, and z axes, respectively) are scaled to u~, the pressure p is scaled to pu~ (0 is the 
density of the liquid), and only dimensionless variables are employed. It is assumed that 
the curvature k = L/R = ~K < i, K ~ i, g < • < i, i.e., the flow is considered for large 
Gortler numbers (G = 2 Rel/2L/R ~ x/s > i). 

In Figs. la, b, and c are the characteristic thickness, extent, and width of the vortex 
regions. These quantities must be greater than the characteristic free path of molecules of 
the liquid _g2, otherwise in regions with dimensions Ax ~ b, Ay ~ a and Az - c the Navier- 
Stokes equations will no longer be valid. In addition, b (vortices develop from their forma- 
tion stage up to the nonlinear stage over this distance) must be greater than the transverse 
dimensions of these regions and must not exceed the dimensions of the body in the flow, i.e., 
g2 < a, C < b~l. 

2. In constructing the asymptotic theory of Gortler vortices, it is assumed that the 
instability of the boundary layer gives rise to nonlinear disturbances of the flow functions 
(Au ~ u, for example) in the region where they are located, i.e., the disturbances due to the 
vortices affect the characteristics of the boundary layer even in the first approximation. 
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Fig. i 

In a centrifugal force field there then arises a pressure disturbance Ap - kuiAy, which in- 
duces a velocity w ~ Aw - Apl/2 ~ kl/iuAyl/2. Since estimates were obtained for 5p and w 
by comparing the orders of magnitudes of the convective terms of the Navier-Stokes equations, 
the mechanism of convection is the main mechanism for formation of the vortices. 

Let the vortices appear near the wall in the part of the boundary layer with character- 
istic thickness Ay ~ a < 6 ~ e, where the vorticity of the flow is highest and the velocity 
u is proportional to the distance from the surface u ~ 5y/e. Then the following estimates 
are valid: 

u ~ a / e ,  Ap ~ •  2, w ~ •  ( 2 . 1 )  

In the general case the thickness and width of the vortex region are of the same order of 
magnitude Ay ~ a - &z ~ c, and for this reason 

a ~ c ~ •  ~. (2.2) 

The e s t i m a t e s  ( 2 . 1 )  and  ( 2 . 2 )  make i t  p o s s i b l e  t o  i n t r o d u c e  f o r  t h e  r e g i o n  3 n e a r  t h e  w a l l  
variables and asymptotic expansions of the flow functions (here the disturbed regions of the 
flow are enumerated in the manner traditionally employed in investigation performed in this 
country (see, for example, [20]): 

x ---- bx3, y = • z = • 

u = (• -~ . . . .  v = (• 3 %- . . . .  

w = (• ~- . . . .  Ap .-~ (•176 ~- . . .  

(2.3) 

(Sp is determined relative to the pressure on the surface at the point of formation of the 
vortices). Substituting Eqs. (2.3) into the Navier-Stokes equations and passing to the limit 

+ O, E < ~ < i show that in the general case for b - (g/u)3/s < i the development of vor- 
tices is approximately described by Navier-Stokes equations, parabolized in the longitudinal 
direction, without a longitudinal pressure gradient: 

Ou3/Ox3 + Ov3/Og3 ~- 0w3/0% = O, 

,~ 2 a o i~  2 u3Ou3/ax3 + v3Ou3'Oy3 + w30%,,'Oz3 = O-ujOy3 + - %  a%, 

, , ~ 2 ') u30%/Ox~ + v~O~3'Og3 + u~3Ov3,'Oz~ + Ku~ + OpJOy 3 0 v3,/Oy ~ + 02v~/Oz~, 

U30W3/OX3 "37 V3Otl/3/OY 3 -t- W3OtL'3'OZ 3 -~ Op3'OZ 3 = 02tU3/Og 2 -[- 021.1)3/0Z23" 

( 2 . 4 )  

The conditions of attachment and impermeability are satisfied on the surface: 

u3 := v3 = w3 = 0  (Y3 = 0 ) ,  ( 2 . 5 )  

and the external and initial conditions are obtained by joining with the flow in the part of 
the boundary layer near the wall: 

u3--+ Ay3,  v~, w3--+O , (2.6) 

P3 ~ - -  KA2y] /3  (x3--~ - -  c~ or Y3 -+ co). 

364 



Here A = (au0/ay~)w; u0(y=) is the profile of the velocity u in the boundary layer at the 
point of formation of the vortices; y2 = y/~. The condition of periodicity is satisfied in 
the transverse direction: 

u3, v3, w3, p3(x3, Y3, z3) = ua, v~, ~o 3, P3(x3, y~, z3 + ~) ( 2 . 7 )  

where ~ is the wavelength of the vortices. 

The boundary-value problem (2.4)-(2.7) describes the nonlinear development of short- 
wavelength Gortler vortices with a - c - e6/s/ul/s < 6 ~ e in the part of the boundary layer 
near the wall. The quantity A is the only characteristic of the boundary layer that appears 
here and the vortices develop in a plane-parallel flow, since the flow functions in the 
boundary layer do not change significantly over a longitudinal distance Ax - b ~ (e~x)3/s < I. 

For (e/~)3/s < b < (~/~)i/2 the dissipative terms in Eq. (2.4) are not significant and 
the condition of impermeability is satisfied on the surface. In order to satisfy the condi- 
tions of attachment, it is necessary to consider a viscous boudnary layer. If, however, 
E/~I/2 < b < (e/~)3/5, then the convective terms in Eq. (2.4) are not significant. But then 
the mechanism of flow instability disappears and for such vortices the estimates (2.1) and 
(2.2) are not valid. 

The variables x3, y~, z~, u~, v~, w3 and p~ can be scaled to (%/2~K)~/=, ~/2~, %/2v, 
A%/2~, AK~/=(%/2~)~/=, AKi/2(%/2~)s/= and A2KX/2~, respectively. Then Eqs. (2.4)-(2.7) 
assume the form 

ou/Ox § o v / @  + ow/az  = O, 

Re~(uOu/Ox + vOu/Oy 5- wOu/Oz) = O~u/Oy ~- +O~u/Oz 2, 

Re1(uOv/Ox -+- vOv/Oy -~ wOv/Oz -~ u 2 + OplOy) = 02t) /Of f  2 -]- 02v/Oz2, 
Rel(uaw,'Ox + vax, 'ag § ~vaw/Oz + Op/Oz) = a2u~,'oy 2 + o~w/Oz 2, 

u = v = w = o (l/ = 0), u - + y ,  v, u, ~ o, p --~ - - y U 3  (x - -~  - - c o  

or  g - +  oo), u, v, ~v, p ( x ,  y ,  z) = u, v, iv, p ( x ,  y ,  z + 2~) ,  

Re1 = A KVO-()~/2n)5/~ ~ l ,  

( 2 . 8 )  

where, for brevity, the index 3 in the variables is dropped and Re I is the local Reynolds 
number. 

For small disturbances of the boundary layer Eqs. (2.8) can be linearized relative to 
the initial conditions: 

u = y + a U  § . . . .  v = a V  § . . . ,  u, = = W - 1 -  . . . ,  

p = - - y 3 / 3 + a P  q- . . . .  a < 1 .  

Representing the linearized solution (see, for example, [5]) as 

U = e ~ p  (~x)Udy)  cos  z, V = e x p  (~x)V~(y) cos  z, 

W = exp  (~x )Wl (y )  s i n  z, 7 3 = exp  (~x)Pl (y )  cos z 

the boudnary-value problem (2.8) can be reduced to the following problem: 

( 2 . 9 )  

~y~ + d V / d y  + W~ = O, Re~(DUI  § L )  = d~Uddy 2 - -  U~, 

Fie~(~yV~ + 2yU~ + dP~/dy) ---- d~V~/dy '- - -  Vt, 

Re~(~yW~ - -  Pz) = d2W/dy:  _ W~, 

Yl(O) =- L ( O )  = W~(O) - U~(o~) = L ( o o )  = W~(oo) = O. 

(2.1o) 

This is a typical eigenvalue problem: for each value of the growth rate $ of the ampli- 
tude of the vortices it is necessary to find one or several values of Re I for which a non- 
trivial solution of the problem exists. Equation (2.10) was solved with the help of the 
method of backward iterations [21]. Figure 2 shows Bl versus Re i for the first vortex mode 
of the curve i, which passes practically through the origin; it is linear up to Re I = 0.3 and 
As Re I increases further the growth rate $I increases monotonically and approaches its 
limit for Re I § ~: 
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~,, = n -1/2, n = i ,  2, 3 . . . . .  ( 2 . 1 1 )  

where  n i s  t h e  number o f  t h e  mode. The r e l a t i o n  ( 2 . 1 1 )  can be o b t a i n e d  f rom Eq. ( 2 . 1 0 )  i s  an 
a n a l y t i c a l  f o r m ,  i f  t h e  r i g h t - h a n d  s i d e s  a r e  d ropped  t h e r e  [ 2 2 ] .  An a n a l o g o u s  l i m i t  can be 
o b t a i n e d  w i t h  t h e  h e l p  o f  Eq. ( 2 . 3 )  w i t h  ( r  < b < ( e / •  

F i g u r e  3 shows t h e  p r o f i l e s  Uz(y )  f o r  Rez = 0 . 8 6 4 ,  2 . 5 4 ,  and 114 ( c u r v e s  1 - 3 ) .  For  l a r g e  
v a l u e s  o f  Re~ t h e  maximum o f  U~(y)  l i e s  c l o s e  t o  t h e  s u r f a c e ,  and in  t h e  l i m i t  a v i s c o u s  sub-  
l a y e r  i s  fo rmed  h e r e .  As Re x d e c r e a s e s  t h e  maximum o f  U~(y)  moves away f rom t h e  s u r f a c e ,  
i . e . ,  t h e  v o r t i c e s  " f l o a t  u p . "  

The g rowth  in  t h e  a m p l i t u d e  o f  t h e  v o r t i c e s  i s  c h a r a c t e r i z e d  by t h e  p r o d u c t  

~x : B X / L ,  X ~ L ,  

B = (• ~ = (• I] (2nK/%) ~/'. ( 2 . 1 2 )  

Curve 2 in Fig. 2 shows the change in the quantity 81/Re~/5, which has a maximum at Re z = 4.4. 

3. The solution of the boundary-value problem (2.10) does not permit determining the 
final value of Re I for neutral vortices, i.e, for ~ = 0. As X decreases, R I decreases corres- 
pondingly. But then the convective terms become insignificant in the equations of motion and 
the mechanism of instability disappears. For this reason, a decrease in ~ must be compensated 
by an increase in the characteristic velocity, so that the value of the local Reynolds number 
would remain finite. This is possible if the vortices "float up." Since the friction stress 
remains of the same order of magnitude in the entire boundary layer and the flow in the dis- 
turbed region "floating up" to a characteristic height h is viscous, we obtain 

a N ebU3, c ~ (s3/• h ~ • 2, (~/• < b ~ (e/• 

u ~ h/G Au N a/e, v ~.  ah/eb, w ~ ch/eb, Ap .--. w 2 .--" (ch/eb) 2, 

which makes it possible to introduce the following variables and asymptotic expansions: 

x = bx3, g = • -i- ebl/3Y3, z = ( l~3/xb) l /2z3 ,  

u = (• @ bU3u3 @ .. . .  v : ~b4/3113 --~ . . . .  

Y2 

w = (•  + . .  ., Ap ~ - -  (• J uody2 ~ + ~ebp 3 + . . . .  
0 

(3.1) 

Here Y2 ~ h/xb2 - i is the height up to which the vortex "floats," and for h - e, y2 is the 
vertical variable of the boundary layer. Substituting Eqs. (3.1) into the Navier-Stokes 
equations and passing to the limit e + 0, e <~<1, (e/• <b<~(e/x)x/2 show that to a first 
approximation the following equations are valid for the disturbed region: 

Ov3/Ogs-}-Ow3/Oz3 = O, (3.2) 

uoOu3/O~ + ~(duo/dg2 + Ou3/Og3) + w3Ou~/Oz3 = 02u310z~, 

uoO~/Ox3 + v3OvJOy3 + w3Ov(Oz3 + 2Kuou3 = O~v3/Oz~, 

uoOwjOx3 + v3&%/O~ + w3OwdOz3 + OpdOz3 = 02wd3~.  

The solution of this system must decay upstream and from top to bottom as a function of the 

coordinate Y2: 

u3, v3, w3, p3-+0 (x3-+--~ or g3-++__~), (3.3) 

and it must also satisfy the periodicity condition (2.7). 

The boundary-value problem (2.7), (3.2), and (3.3) describes the nonlinear development 
of Gortler vortices which have floated up. Its solution determines the small changes in 
the velocity u and the finite gradients of the velocity 8u/3y. The only characteristics of 
the boundary layer that appear here are the values of u 0 and du0/dy2 at the height Y2 to 
which the vortices rise, and the vortices develop over the short distance (e/• < Ax - b 

(e/x) I/~ < 1 in a flow with constant velocity. 
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The variables xa, Y3, za, u s, v3, wa and P3 can be scaled to u0(I/2z) 2, (u0/(du0/dy2)) I/a 

(I/2~) 213, I/2~, u~/3(duo/dy2)2/a(i/2z) 2/3, (uo/(du0/dY2)) I/3 (2~/I) ~/3, 2~/I and (2~/I) 2, 

respectively. Then Eqs. (2.7), (3.2), and (3.3) assume the form 

Ou,"@ ~- Ow,'Oz = O, 

Ou,'Oz + u(l § Ou/Og) + wOu:'Oz = c)%"Oz ~, 

Ov.'Oz + vOW@ + wOv/Oz + G~u = 02v/Oz 2, 

O~/Ox + vow.'@ + wOw/Oz + Op/Oz = O~w,"Oz ~, 

u, u, w, p - + 0  ( x - ~ - - c ~  or y - ~ + o o ) ,  

u, v, w, p (x ,  g, z) = u, v, w, p (x ,  g, z ~- 2.n), 

Gz = 2Kuo(duo/cly2)(l/2n) 4 ~ t ,  

(3.4) 

where for brevity the index in the variables has been dropped and G l is the local Gortler 
number. Linearization is possible for small amplitudes of the vortices, when the quadratic 
terms in Eqs. (3.4) are smaller than the linear terms. The representation (2.9) leads to the 
conclusion that a nontrivial solution (solid curve in Fig. 4, the dashed curve shows the 
tangent to it, passing through the origin ~ = GI/4) exists only if 

G1 = (i + ~)~, n = 1, 2, 3 . . . . .  ( 3 . 5 )  

The increase in the amplitude of the vortices in the case under consideration is character- 
ized by B = (~/bu0)(2~/i) 2. As b + (E/~)3/s, i.e., passing to vortices in the part of the 
boundary layer near the wall, the expressions for G I and B can be represented as 

G1--+2 Re~g2/(l/2~), y2--+~/2~, 

B ~ (• (~/~,)(m/~K~/~/Rel/9 (Zi2~),'u~. 

Comparing Eqs. (2.12) and (3.6) shows that the dashed curve (Fig. 4) in the variables of Fig. 
2 is determined by the relation 8 = Rel/2 and is the asymptote to the curve 1 in the limit 
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Re I + 0, i.e., as Rez decreases and the vortices "float up" the curves of all $n (n ~ i) 
versus Ret must approach the linear section of curve 1 and merge with it. Its continuation 
in the limit Rez + 0 is the dashed line, which transforms, as the scales $ and Re~ change, 
into the dashed line in Fig. 4 and then joins smoothly with the solid line at finite values 
of Gz. 

The relation (3.5) determines the quantity G I = i, when all modes become neutral (~n = 
0, n > i). The product u0(du0/dy2), evidently, has a maximum, and the corresponding value of 
y= cha-racterizes the height to which the neutral vortices with the shortest wavelength "rise." 

4. The estimates (2.1) and (2.2) remain valid as the transverse dimensions of the vor- 
tex region increase, right up to ~ - c ~ 6- ~. Then the vortices will fill most of the 
boundary layer (region 2) with characteristic thickness Ay - 6 ~ e, for which the following 
variables and asymptotic expansions are introduced: 

x = (e/'• g = ey2, z = ez2, Ap ~ •  + ... .  
X 1 / 2 ~ l / 2 w 2  U = U 2 ~ . . . .  V " =  ~ l / 2 g l / 2 a  2 ~ . . . .  lU : ~ . . . .  

S u b s t i t u t i n g  t h e s e  e x p a n s i o n s  i n t o  t h e  N a v i e r - S t o k e s  e q u a t i o n s  and p a s s i n g  t o  t h e  l i m i t  
E + 0, e < K < 1, we f i n d  t h a t  t o  a f i r s t  a p p r o x i m a t i o n  t h e  f l o w  i s  d e s c r i b e d  by t h e  E u l e r  
e q u a t i o n s  w i t h o u t  t h e  l o n g i t u d i n a l  p r e s s u r e  g r a d i e n t :  

au~/ax~ § av~'ay~ § aw~/az2 = o ,  (4. i )  
U 2 O U 2 / a X 2  ~ V20U2/OY2 ~ W2OU2/OZ 2 = O, 

u~Ov2/Ox2 + t'20v2'OY= + w~Ou~,.'Oz z + Ku~ + Op2/Og 2 = O, 
u2aw~/Ox2 + v2aw2./ay2 + w2aw2,.az2 + ap /az2  = O. 

Only the impermeability condition can be satisfied at the surface 

v~ = 0  (V~ = 0 ) ,  ( 4 . 2 )  

and the initial and external boundary conditions are obtained by joining with the solution 

for the entire boundary layer: 

~2 (4 .3 )  
u2--+Uo(y2), P 2 - + - - K y u ~ d y 2 ,  v2, w2-+O ( x 2 - ~ - -  ~ or g 2 - + ~ ) .  

0 

The s o l u t i o n  o f  Eqs .  ( 4 . 1 )  mus t  a l s o  s a t i s f y  t h e  p e r i o d i c i t y  c o n d i t i o n s  ( 2 . 7 ) .  

Among t h e  c h a r a c t e r i s t i c s  o f  t h e  b o u n d a r y  l a y e r ,  t h e  v e l o c i t y  p r o f i l e  u 0 ( y  2) e n t e r s  i n t o  
t h e  b o u n d a r y - v a l u e  p r o b l e m  ( 2 . 7 )  and ( 4 . 1 ) - ( 4 . 3 ) .  He re  &x ~ ( s / x ) z / 2  < 1 and t h e  l o n g i t u d i n a l  
change  in  t h e  f l o w  f u n c t i o n s  in  t h e  b o u n d a r y  l a y e r  i s  i n s i g n i f i c a n t .  A v i s c o u s  b o u n d a r y  l a y e r  
can  be c o n s i d e r e d  n e a r  t h e  s u r f a c e  in  o r d e r  t o  s a t i s f y  t h e  a t t a c h m e n t  c o n d i t i o n s .  

For  t h e  c a s e  when I does  n o t  e x c e e d  t h e  t h i c k n e s s  51 o f  t h e  b o u n d a r y  l a y e r  ( t h e  v a l u e  o f  
t h e  c o o r d i n a t e  Y2 f o r  wh ich  u0 = 0 .99  can  be t a k e n  f o r  8 1 ) ,  t h e  v a r i a b l e s  x 2, Y2, z2 ,  v2 ,  w2 
and P2 a r e  s c a l e d  t o  ( t / 2 ~ K ) Z / 2 ,  k / 2 ~ ,  t / 2 ~ ,  ( X K / 2 ~ ) l / 2 ,  ( X K / 2 v ) z / 2  and t K / 2 ~ ,  r e s p e c t i v e l y .  
I n  t h e  new v a r i a b l e s  ( w i t h o u t  t h e  i n d e x  2) Eqs .  ( 2 . 7 )  and ( 4 . 1 ) - ( 4 . 3 )  assume t h e  fo rm 

au/&: ~, a w a y  ~- ?aaw/az = O, 

uOu/Ox ~- vau/ag :c ?awOu,'az = O, 
, i U.2 ?2?a(uOv/ax v- vOvOy " ?aWOU/cgz) ~- q- ap/ag = O, 

uaw/ax  - vow/@ -~ ?awatv/O.z -~- ap/az  = o, v = o (g = o), 

Y 

~-+~o('ay), p-+-JU~o@, ", w-+o ( ~ - + - ~  o~ y-- , . . ) ,  
0 

tt, v, w, p(x ,  g, z) = u, v, w, p(x ,  g, z q- 2~), 

(4.4) 

where ~z = X/2~61; 0 < Yz ~ i; Y2 = Y3 = i. For small disturbances of the boundary layer Eqs. 
(4.4) can be linearized with respect to the initial conditions. The representation (2.9) 
makes it possible to obtain for a boundary layer with intense suction [23] 
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u0 = I -- exp (--71Y), v0 = --I/61, 6~ = const , 

an analytical solution and the following expression for $ [22]: 

~7 ~ = 7 1 (  n ~ - t ) / 2 + n ,  n = 1 , 2 , 3  . . . . .  

As yi § 0 the expression (4.6) transform~ into the expression (2.11). 

(4.5) 

(4.6) 

The growth in the 
amplitude of the vortices is characterized, in this case, by the quantity 

B = ( ~ / b ) ( 2 n K / k ) : / 2 ,  (e/• < b ~ (e l •  ( 4 . 7 )  

5. In  t h e  s tudy  of  l o n g - w a v e l e n g t h  v o r t i c e s  (c > 5 - ~) i t  i s  assumed t h a t  t he  n o n l i n e a r  
changes occu r  in  t he  main p a r t  of  t h e  boundary l a y e r  ( r e g i o n  2) wi th  c h a r a c t e r i s t i c  t h i c k n e s s  
AY2 ~ 5 - ~. Above this region there can be a weakly disturbed zone of the external flow 
(region i) with characteristic thickness AYl ~ c. The following estimates can be obtained 
for the region 2: 

Am 2 ~-" b, A g  2 .'.-" a N g, hz2  ..... c ~ • (gig)U2 < b ~ t, ( 5 . 1 )  

u f ~ A u f ' ~ l ,  v f ' ~ e l b ,  w f ~ •  A p ~ •  

In order for an interaction to exist between regions 1 and 2 it is necessary that tlhe velo- 
city v in them remain of the same order of magnitude. Then, for region 1 the following esti- 
mates are valid: 

A x l  ~ b, A g l  ~ f~Zl ~ •  U 1 " "  l ,  V 1 .-~ W I ~.. e /b ,  ( 5 . 2 )  
A u l  .-~ Ap~  ~ •  

Comparing the estimates (5.1) and (5.2) shows that Apz/Ap2 - (~/x)i/2/b < i, i . e . ,  the distur- 

bances induced in region 2 decay in the region 1 and there is no back effect on it. 

The following variables and asymptotic expansions are introduced for region 2 on the 
basis of the estimates (5.1): 

(Elx )  l l  2 < b 2 
e q u a t i o n s  

X ~ bx2,  y = e y f ,  z = ~1/281/2bz2 ,  A p  ~ •  4-  . . . .  

u = u 2 -~  . . . .  v = (e /b )v  2 ~ . . . .  u, =- •  ~-  . . . .  

substituting which into the Navier-Stokes equations and passing to the limit E § 0, s < x < i, 
1 we find that, to a first approximation, the flow is described by the 

The conditions 

@Uf/OX2 + OV2/Oy2 "~ OWf/aZ 2 = O, KU~ + O p f / 3 y  2 = O, 

U20UJOX2 + VfOUJOy2 + WfOUf/OZ 2 ~ bOfu~,.3yf; 2 

u~_Ou'.dOx2 + v.~Owf/Oy2 + w~Ow/Oz2 + Op.~,/Oz 2 = bOfwf/Oy~. 

(5.3) 

uz  = w2 = O, v 2 = buow (gz = 0), ( 5 . 4 )  

must be s a t i s f i e d  on t he  s u r f a c e  and t he  i n i t i a l  and e x t e r n a l  boundary c o n d i t i o n s  a r e  found 
by j o i n i n g  wi th  t he  s o l u t i o n s  f o r  t he  boundary l a y e r  and the  e x t e r n a l  f low:  

u2 = Uo(y2), v2 = bvo(y2),  w2 = O, 

Y2 

P2 - - K ~  2 = uody~ ( x f=  - - x o / b ) ,  
0 

Y2 

- - K  u~dy  2 oo), u2-+1' wf"+O' Pf'~ S (Y2-+ 
o 

(5.5) 

In addition, the periodicity condition (2.7) must be satisfied. 

The boundary-value problem (2.7) and (5.3)-(5.5) describes the nonlinear development of 
long-wavelength vortices. For b < 1 Eq. (5.3) does not contain any dissipative terms. The 
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initial profile u0(y 2) is the only characteristic of the boundary layer that appears in the 
problem; the longitudinal change of the profile is not significant. In order to satisfy 
the conditions of attachment a viscous boundary layer can be studied near the surface. If, 
however, b - i, the longitudinal scales of the boundary layer and of the vortices are the 
same and the longitudinal change in the flow functions in the boundary layer must be taken 
into account. 

It is helpful also to scale the variables x~, Y2, z2, v 2, w 2 and p~ to ~12~K~i~l~,~, ~12~, 

2~K~/~8~/~, Ki/~8~ ~ and K~. In the new variables Eqs. (2.7) and Eqs. (5.3)-(5.5) for 

b - i assume the form 

au/ax  § a m @  § am/az = o, u ~ § ap lay  = O, 

He2(uau/ax -~ uOulay + waulaz) = a2u/ayL 

R%(uaw/ax + vaw/ay -~ waw/az + aplaz) = a~wlay ~, 

u = w = 0 ,  v =  (SJRe~)Vo~ (y = 0 ) ,  

u ---~ t ,  w--+ O, p---~- - -  ~ u2dy @ -+ r162 ), 
o 

u = uo, v = (S1/Re~)Vo, w = 0, 
Y 

p = - S , ody ( x  = -  xo),  
0 

u, v, w, p(z ,  y, z) = u, v, w, p(x, ![, z -4- 2#), 

l~e~ = 2 ~ g l l : 6 [ z ~ / Z  . . .  I ,  

(5.6) 

where for brevity the index 2 in the variables is dropped; Re 2 is the local Reynolds number. 
The corresponding boundary-value problem for b < i can be obtained from Eqs. (5.6) by passing 

to the limit Re 2 ~ ~. 

For the case when a - c -~ - ~ but X is greater than ~i, the use of the variables (5.6) 
makes it possible to represent the boundary-value problem in the form (4.4) with 71 = Y3 = I, 
Y2 = (2~61/X) 2, 0 < Y2 J i. Its solution for Y2 § 0 must be the limiting solution for (5.6) 
in the limit Re 2 + ~. In the linear approximation, using the representation (2.9) and the 
profile (4.5), a solution of the problem and the relation for $ can be found analytically: 

~ = (n2--  t)/2 + n?~ z2' n = t ,  2, 3 . . . .  ( 5 . 7 )  

It is obvious that for Y1 = Yz = i 
remarkable that for the first mode 

modes 6n remains finite as Y2 + 0, 
tances than all subsequent modes. 

the expressions (4.6) and (5.7) are identical. It is 
= -i/4 and $i + ~ as Y2 + 0, while for all other $i ~2 

i.e., the first mode builds up linearly over shorter dis- 

For small disturbances of the boundary layer the proble m (5.6) can be linearized rela- 
tive to the initial conditions. The representation (2.9) makes it possible to derive a system 
of ordinary differential equations and boundary conditions: 

~UI ~ dV1/dY ~ W1 = O, 2uoU 1 ~ dPJdy  = O, (5.8) 

Re~ (~uoU 1 + UlOtto/Ox + VlOtto/Oy ) + 6lvodU1/dy = d2UJdy 2, 

Re~([~uoW~ - -  Px) ~- 8~vodW,/dY = d2W~/dY 2, 

UI(O ) = VI(O ) ---- [/VI(O ) ---- Ul(OO ) ----- Vl/'l(oo ) ----- Pl(OO) = O. 

A numerical solution of the problem (5.8) was found for the profile (4.5) with ~l = i [21]. 
Figure 5 shows 6~ versus Re 2 (curve 2). One can see that 62 = 0 for Re= = 2.32, i.e., the 
second mode becomes neutral. As Re 2 increases, 62 approaches its asymptotic value (2/3)i/2 = 
0.816 (see the expression (5.7) for n = 2 and y2 + 0). For the vortex development regime 
under study, the growth in the amplitude of the vortices is characterized by the quantity 

B = (~/b) (2~K/~,)'i27~/4 = [~ H%/bS~, 
( 8 / ~ ) 1 / 2 < b ~ <  t ,  0 < y 2 < i .  

(5.9) 
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As b + (~/~)~/2 and X2 + 1 the expressions (4.7) and (5.9) become identical. 

6. We now consider the linear development of long-wavelength vortices, which are now 
no longer localized inside the boundary layer. In this case the region 1 is perturbed and 
the region 2 is weakly perturbed. Near the surface there must be a region 3 which, in the 
general case, is viscous and nonlinear and for which the following estimates are valid: 

Ax3,--, b, A y  3 ,'~ 8b x/~, Az 3 ..~ c, v 3 ~ 8/bV3, 

u3 "~" A u 3  " "  b 1/~, w3 "-" c / b  2/3, Ap3 "--" cVb ~/~. 

( 6 . 1 )  

In the region 2 hp2 is produced by centrifugal effects and AP2 - AP3. For this reason here 
the following estimates are valid: 

A x  2 ,~ b, Ay~ ... e, Az~ .-... c, u 2 ~ 1, Aue ~ cV• 

v z ..-" c2/b r/3, w 2 .--. c/bl/3, Ap 2 ~ c2/b4/3. 

In the region 1 all perturbations should decay and therefore 

( 6 . 2 )  

A x l - ' - ' b ,  A y a ~ A z l ~  c, u 1 ~  t ,  A u l . - - . A p a ~ c ~ / b t / ~ ,  ( 6 . 3 )  

U 1 ~ W 1 ~ c / b l / 3 .  

When r e g i o n s  1 and 2 i n t e r a c t  v 1 - v f .  One can  s e e  f rom Eqs.  ( 6 . 2 )  and ( 6 . 3 )  t h a t  t h i s  i s  
p o s s i b l e  i f  

c ~ xb 2, b > e V f / •  2. ( 6 . 4 )  

On t h e  o t h e r  hand ,  when r e g i o n s  2 and 3 i n t e r a c t  n o n t r i v i a l  j o i n i n g  o f  t h e  e x p a n s i o n s  f o r  
t h e  v e l o c i t y  u(Au 2 - u3)  i s  n e c e s s a r y ;  t h i s  i s  p o s s i b l e  i f  ( s e e  Eqs .  ( 6 . 1 )  and (6.21))  

c~ ' •  b ~ l .  ( 6 . 5 )  

In  t h e  g e n e r a l  c a s e ,  when a l l  t h r e e  r e g i o n s  i n t e r a c t  w i t h  one  a n o t h e r  and a c o m p l e t e l y  t h r e e -  
l a y e r  s t r u c t u r e  o f  t h e  d i s t u r b e d  f l o w  i s  r e a l i z e d  n e a r  t h e  c o n c a v e  s u r f a c e  [24 ,  25]~, t h e  
e s t i m a t e s  ( 6 . 4 )  and ( 6 . 5 )  and 

b , ~  8 3 / 7 / ] 4 3 / 7 ,  C ~ ~ 1 / 7 8 6 / 7  ( 6 . 6 )  
are valid. 

We give below the final form of the boundary-value problems for the regions 1 and 3 for 
the general case (6.6): 

a9 2 
"p,/Oyl + 02pl/OZ~ O, Pl ~ 0 (Yl "+ ~ ), 

2 2 Opl/Oy 1 = ?50 D/Ox~ (Yl = 0), 

% = ~ / 2 a A f K I  6, 0 ~ ?5 <<, t ,  px(x3, Yx, za) = p l ( x  3, gl, zs @ 2zQ, 

Ou~/Ox3 + Ov3/Oy 3 ~ Ow3/Oz ~ = O, Op3/Oy 3 = O, 

u3OuJOx~ + v3Ou3/Oy~ + w3Ou3/Oz~ = O'~uJOy~, 

u~Ow3/Ox3 + v30w3/Oga + w~Ow3/Oza + Op3/Oz~ = 02ll)3/C)g], 
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u s = v s = w a = 0  ( Y s = 0 ) ,  

u8 - +  Ys, vs, ws, Pa, D --* 0 (x 3 - +  - - o o ) ,  

us ~ Y3 + ?4D,  w3 - +  0 (Ys - *  oo), 

Ps = D + Pl(X~, O, z3), 74 = ~/4a~KlS, ~ 0 <~ 7~ <~ 1, 

us, v~, w~(x~, Ys, z s ) =  us, v~, 

ws(xs, gs, zs § 2n),  

Ps, D(xs, z s ) =  Ps, D(x~, 

z~ § 2n).  

(6.7) 

Here the indices 1 and 3 in the variables denote the numbers of the region; D(xm, z 3) is 
the thickness of the expulsion of region 3; the parameters Y4 and ~5 characterize the degree 
of interactions of the regions 2-3 and i-2, respectively; and s is the thickness of the 
region 3. Linearizing the problem (6.7) for region 3 relative to the initial conditions and 
using (2.9) and the representation D(xm, zm) = D1exp(Sxm)cos z~ we can reduce the problem 
entirely to a system or ordinary differential equations and boundary conditions: 

[~U~ + d V / d y  s + W~ = O, ~ysU1 + V 1 = d2UJdg~, 

~y~W 1 - -  n~ (I - -  75~ ~) = d~W~/dy~, 

UI(0)  = Vl(0) ~ Wl(0)  ~--- Wl(OO ) : 0, UI ( (~  ) ----- ?4D~, 

the solution of which is expressed in terms of the Airy function Ai(~) and has the disper- 
sion relation 

75~ ~ - -  3?4~5/adAi (O)/dq = t .  ( 6 . 8 )  

It follows from Eq. (6.8) that for ~ = 0, ~ = i, s = (~/2vh:K)I/6 (when the regions 2 
and 3 do not interact) we have ~ = i. The corresponding limiting solution can be obtained 
from Eq. (4.4) with ~i = 72 = i, 73 = 2z61/~, 0 < 73 i i. In the linear approximation, using 
(2.9) and the profile (4.5) with Y1 = i, the problem can be solved analytically [22] and the 
following expression is obtained for B: 

2 
? s / ~ n = ( n ~ - - l ) / 2 + n ? 3 ,  n = 1 , 2 , 3  . . . .  ( 6 . 9 )  

It is easy to see that as ~i, ~s § ! the formulas (4.6) and (6.9) become identical and only 
~l + 1 as Ys + 0; for all higher order modes ~n - 7~/2 + 0, n > i. 

In the other case, when the region 1 is not perturbed, ~5 = 0, 74 = i, s = (~2/4~2K)I/~ 
and it follows from Eq. (6.8) that $ = (-3d Ai(0)/dn)-3/5 = 1.165. The limiting solution 
can be obtained numerically from Eq. (5.8) for the profile (4.5) with YI = 1 [21]. Figure 5 
shows $i for the first mode versus Re 2 (curve i). One can see that for Re= = 0.486 this mode 
becomes neutral. As Re 2 increases, ~i approaches its asymptotic value. 

Figure 6 shows a diagram of the development of Gortler vortices in the boundary layer of 
a liquid near a concave surface. Here the width c of the vortex region is plotted algng the 
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abscissa axis and the extent of the region b is plotted along the ordinate axis; m; - i. 
The point B corresponds to the regime described by the solution of the boundary-value 
problem (2.8). As the values of c and % increase the vortices "float up". This transition 
corresponds to the line AB and the boundary-value problem (3.4), and here the short-wave- 
length vortices can become neutral. As the transverse dimensions of the vortices increase, 
the extent b changes in accordance with the line BC. At the point C the vortices fill the 
entire thickness of the boundary layer and their development is described by the solution of 
the boundary-value problem (4.4). 

As c and ~ increase further the first mode separates from all subsequent modes. The 
higher order modes are localized inside the boundary layer (tile line CD, boundary-value 
problem (5.6)), and for them c > a. The first long-wavelength mode first develops along 
the line CE with a- c > 6. Beyond the point E (boundary-value problem (6.7)) the vortex 
region starts to flatten and at the point D all modes once again merge; here the long-wave- 
length vortices can become neutral. 
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